Noncommutative Factorization of Variable-length Codes 1. J~ntroduction

نویسندگان

  • Christophe REUTENAUER
  • C. Reutenauer
چکیده

A (variable-length) code is a free subset of a free monoid; more formally, it is the basis of some free submonoid. The theory of these codes (not to be confused with error-detecting codes) was first developed by M.P. Schiitzenberger. A major problem in this theory is to factorize codes, that is, considering the characteristic formal power series of a code (in the noncommutat ive formal power series algebra), to find a factorization of that series, or of its commutative image. Let A be some finite set and A* the free monoid generated by A. Let C be a code an g denote also by C its characteristic series, which is an element of the Z-algebra ~_%.. ~ of noncommutat ive formal power series on A. Let ~o : Z((A)) ~ Z[[A]] be the canonical homomorphism. Schiitzenberger showed that, if C is a maximal and finite code, then there exists in the algebra of commutative polynomials, Z[A], a factorization of the form

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-dual skew codes and factorization of skew polynomials

The construction of cyclic codes can be generalized to so-called ”module θ-codes” using noncommutative polynomials. The product of the generator polynomial g of a self-dual ”module θ-code” and its ”skew reciprocal polynomial” is known to be a noncommutative polynomial of the form X − a, reducing the problem of the computation of all such codes to the resolution of a polynomial system where the ...

متن کامل

On the Complexity of Noncommutative Polynomial Factorization

In this paper we study the complexity of factorization of polynomials in the free noncommutative ring F〈x1, x2, . . . , xn〉 of polynomials over the field F and noncommuting variables x1, x2, . . . , xn. Our main results are the following: • Although F〈x1, . . . , xn〉 is not a unique factorization ring, we note that variabledisjoint factorization in F〈x1, . . . , xn〉 has the uniqueness property....

متن کامل

Noncommutative Double Bruhat Cells and Their Factorizations

0. Introduction 1 1. Quasideterminants and Quasiminors 3 1.1. Definition of quasideterminants 3 1.2. Elementary properties of quasideterminants 4 1.3. Noncommutative Sylvester formula 5 1.4. Quasi-Plücker coordinates and Gauss LDU -factorization 5 1.5. Positive quasiminors 6 2. Basic factorizations in GLn(F) 7 3. Examples 11 3.1. A factorization in the Borel subgroup of GL3(F) 11 3.2. A factori...

متن کامل

B?J/?(?,K) Decays within QCD Factorization Approach

We used QCD factorization for the hadronic matrix elements to show that the existing data, in particular the branching ratios BR ( ?J/?K) and BR ( ?J/??), can be accounted for this approach. We analyzed the decay within the framework of QCD factorization. We have complete calculation of the relevant hard-scattering kernels for twist-2 and twist-3. We calculated this decays in a special scale ...

متن کامل

Construction of Symmetrical Reversible Variable Length Codes Using Backtracking

Many coding standards, such as JPEG, H.261, H.263, MPEG-1, MPEG-2, use variable length codes (VLC) as their entropy coding strategy. However, VLC have a big drawback when transmitting over a noisy channel. This drawback is an error propagation problem. For this reason, reversible variable length codes (RVLC) have been used to enhance the error resilient capabilities of VLC. This paper presents ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1985